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ABSTRACT

There is currently considerable interest in low-cost, lightweight, compactly packagable

deployable elements for various future missions involving small spacecraft. These

elements must also have a simple and reliable deployment scheme and possess zero or

very small free-play. Although most small spacecraft do not experience large

disturbances, very low stiffness appendages or free-play can couple with even small

disturbances and lead to unacceptably large attitude errors which may involve the

introduction of a flexible-body control system. A class of structures referred to as

"rigidized structures" offer significant promise in providing deployable elements that will

meet these needs for small spacecraft. The purpose of this paper is to introduce several

rigidizable concepts and to develop a design methodology which permits a rational

comparison of these elements to be made with alternate concepts.

INTRODUCTION

There is currently considerable interest in low-cost, lightweight, compactly packagable

deployable structural elements for various future space missions involving small

spacecraft 1. In addition to these requirements, simplicity and reliability of deployment

are of paramount concern. In many instances the concern over the cost and reliability of

deployable components leads spacecraft designers to either not consider them at all, or to

use existing deployable components with low stiffness or joint deadbands. In either case,

spacecraft performance for such missions can be severely compromised due to the lack of

well accepted, high performance deployable components.

Although most small spacecraft do not experience large disturbances, very low

stiffness appendages can couple with even small disturbances and lead to unacceptably

large attitude errors which may involve the introduction of a flexible modes control

capability onboard which increases spacecraft cost. Thus, there exists a need in small

spacecraft for stiff deployable components which are truly low cost and reliable.
The current commercially available SOA for deployable beam elements includes

the unfurlable STEM, the continuous-coilable-longeron mast, the FASTMAST as used

for the Tether satellite, and unfolding "Lazy-Tong" devices which deploy a few bays of

panels such as on the SEASAT. The other approach used in deployment is to simply

hinge panels or elements together with no supporting structure. None of these available

deployable devices satisfies all of the desired requirements for the new generation of

lighter, faster, and cheaper, small spacecraft.



A class of structures referred to as "rigidized structures 2'' offer significant

promise in providing high performance structural components for the new small

spacecraft. A large reflector based on inflatable and rigidized concepts is currently being

built for an In-Step flight experiment 3 as a proof of concept for a microwave and VLBI

antennas. Such reflectors have also been studied for optical interferometers 4 and solar

concentrators 5. The purpose of this paper will be to introduce several new "rigidizable"

structural concepts, and to demonstrate their performance potential through systematic

design studies and through comparisons with alternate concepts.

BEAM DESIGN METHODOLOGY

General Approach for Developing Beam Weight Equations

The primary purpose of this paper is to develop an approach to enable a rational

comparison to be made of weight and diameter of different deployable beam concepts for

small spacecraft. The four general beam concepts to be compared are as follows:

a. Unfurlable BI-STEM 6

b. Coilable longeron 7

c. Space rigidizable organic matrix composite (inflatably deployed)8

d. Unfurlable thin walled aluminum (inflatably deployed)2,9,10

For purposes of comparing the relative merits of the different beam concepts, the

deployable beam is assumed to be cantilevered from a spacecraft and supporting a tip

mass as shown in Sketch-a. The design methodology developed herein could readily be

applied to other applications such as supporting a distributed solar array. Although there

are numerous factors which contribute to the concept selection and design of deployable

beams for spacecraft, attention in this paper is focused on two primary design drivers.

These are 1), a lowest beam natural frequency constraint, and 2), a cantilever root angular

acceleration constraint 0 as shown in Sketch a.

Spacecraft

Tip mass

0
Deformed Beam

Sketch a.- Schematic of Spacecraft with Deployable Beam

The constraint on frequency is commonly imposed upon spacecraft components to deal

with flexible control issues, while the constraint associated with a root angular

acceleration imposes a loading that the beam must be able to withstand without failure.

A general description of the four beams considered in this paper and how they are

modeled are given in the next sections.
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a. Unfurlable STEM.- This classof structuresinvolvesmaterialswhich arethinenough
to be rolled up for packagingwithout yielding, and subsequentlyunfurled into the
deployedstate.Theclassicexampleof this typeof structureis theSTEMandBISTEM6.
The STEMstructureis athin metallicsheetwhich is coiled into acompactcylindrical roll
anddeployedon-orbit. Thedesignis suchthatno involved bendingstrainsexceedyield.
Thesestructuralelementsunfurl into a long tubularshape,thusforming adeployedbeam.
The major shortcomingsof theseelementsis that a slit is requiredalong the lengthto
accommodatelow strainpackaging,resulting in very low beamtorsional stiffnessand
that thedeploymentmechanismis quite heavy. TheBISTEM beamis composedof two
interwoven STEMS which provides additional torsional stiffness from the resulting
friction betweentheoverlappingelements.Undersomeloadingconditionsaslippagecan
occurbetweenthe overlappingelementsresulting in unwanteddeformationor dynamic
perturbations.In thepresentpapertheSTEMis treatedasa simplesteeltubewith a wall
thicknessof 0.005"(5 mils).

b. Coilable Iongeron.-Thecoilablelongeronbeamis ahighly useddeployablebeamand
is well describedin reference7. Theweightandperformanceequationsfor this beamare
takenfrom ref. 7. The popularityof this beamarisesfrom its high reliability andwide
experiencebase. Its shortcomingsarethat is requiresarelatively heavycanisterandis
limited in sizeto about20" in diameterdueto highstrainingin thestowedcondition.

c. Spacerigidizable organic matrix composite(inflatably deployed).-This conceptis
basicallya simpletubularbeamfabricatedfrom a fiber fabric impregnatedwith amatrix
that is rigidized8 after pressuredeployment in space. This concept is still in the
developmentstage,however,it offers thepromiseof a very simple, lowcost,compactly
packagablebeam. In thepresentpaperthetubeis consideredto be fabricatedfrom abi-
directional KEVLAR fabric impregnatedwith a rigidizable matrix. The effective
propertiesassumedfor thebeammaterialare:E = 4x106 psi, thickness= 0.011",anda

weightdensityof 0.05 lb/in 3.

d. Unfurlable thin-walled aluminum (inflatably deployed).- This concept is basically a

thin-walled aluminum tubular beam presuure deployed in space. For this approach the

tubes are made from thin (-3 mil) low-yield-stress aluminum sandwiched between two

thin layers of reinforced Kapton film for structural strength and initial inflatant

containment2, 9. The deployment is obtained by pressurization of the tube to a

cylindrical shape. After deployment the pressure is increased to yield the thin aluminum

into its final wrinkle-free state. The tube is then de-pressurized and remains in a

cylindrical shape providing a high performance structural member. Although this

concept is still in the development stage a full scale deployable solar array has been built

and ground demonstrated 9. This concept has the potential for being an extremely simple,

low-cost, and reliable deployment system. The primary shortcoming of this concept is

the low level of development that has occured in exploring different hybrid wall concepts.

In the present paper the beam is simply considered to be fabricated from 0.003" thick

aluminumwith a modulus of 10xl06 psi.

Weight of a Thin Walled Tubular Beam Subjected to Frequency
and Root Moment Constraints



t

The weight of a thin walled tubular beam as shown in Sketch b can be written as:

WT.B. = pAL = p(2xRt)L (T1)

where p is the weight density of the beam material, and R and t are radius and thickness

of the tubular beam respectively.

Sketch b. Schematic of tubular beam

There are two unknowns, R and t, in equation T1 that must be determined to assure that

the beam performs as required. The two constraints, frequency and cantilever root

angular acceleration provide the two equations for determining these two unknowns.

Frequency Constraint.- For a cantilever beam with a tip mass, map, large enough that
the mass of the beam can be neglected, the fin'st natural bending frequency f is given by

beam theory as:

(W2)

cr3)

yields the following equation

where E is the extensional modulus of the tube material. If the tube is made of an

orthotropic material, E is the extensional modulus in the long direction of the beam. The

moment of inertia of a thin walled tubular beam is approximated by:

I =/tR3t

Substituting for I from equation T3 into equation T2

R3t = L? (T4)
3Ere

where f = L2mtip (2rff) 2

governing R and t:
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Beam Root Moment Constraint.- Using the rotational dynamic equilibrium equation,
the moment M at the root of a cantilever beam with a large tip mass subject to a root

acceleration 0 is:

M = 0_0 (T5)

w

where 0 = L2mtip0

and o_ is the dynamic overshoot factor due to a suddenly applied root acceleration. In

this paper the dynamic overshoot factor o_ is conservatively taken as 2 for numerical

comparisons.

The root stress 6 in the cylinder due to this moment is:

MR MR
(T6)

= I r_R3t

The failure mode in the tubular beam is assumed to be local wall buckling of the cylinder

which is given by:

= C Et-- (T7)
R

This is a generalization of the wall buckling equation for an isotropic cylinder which has

a theoretical value of C = 0.6 In the present paper, the constant C is determined for the

particular orthotropic wall construction being considered.

Combining equations T5, T6, and T7, a second equation relating R and t is obtained as:

Rt2___ot0 (T8)
_CE

Closed Form Solution for Tubular Beam Weight.- A single equation governing the

weight of a tubular beam can be found by substituting the expressions for t and R from

equations T4 and T8 into the weight equation T1 to obtain:

2(3)4/5 g 2/5 (0 ,_2/5( P
WT'B" -- 3 t t E315C215 )L 6/5 (_)1/5 (_)2/5

(T9)

where the tube radius is given by

=(( Lf ]2 KCE] 1/5 (T10)

R _,t,,'_"E'J -g -j

and the tube thickness is given by
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L{"
t - (T11)

3xER3

EquationT9 relatesthe beamweight to the loadingconstraints{" and 0, andis useful
for investigatinghow thebeamweightvariesasafunctionof theconstraintvaluesaswell
as the beam length, the overshootparameter,and the material parameters. In this
equationtheradiusr andthethicknesst vary asa functionof f and 0. For thedifferent
tubularbeamconceptsconsideredin thepresentpaper,therearepracticalconstraintson
the thicknessesdueto thecompactpackagingconstraintsand thesearedealtwith in the
next section.

Beam weight considering thickness contraints. - For each of the tubular beam concepts

considered in the present paper there is a limitation on the tube wall thickness. This

limitation is imposed in order to compactly package the material without excessive

damage. To account for this thickness constraint, weight equations are derived in this

section for both frequency and root moment constraints considering the thickness to be a
constant.

The radius for a constant thickness tc and for the frequency constraint is obtained directly

from equartion T4 as

(T12)

This expression for R is then substituted into the weight equation T1 to obtain

2x2/3 pt2/3 L4/3f I/3 (T13)
Wf = 31/3 El/3

The radius for a constant thickness tc and for the root moment constraint is obtained

directly from equation T8 as

R - xCEt 2 (T14)

This expression for R is then substituted into the weight equation T1 to obtain

Wr m __ 2pLot0 (T15)
CEt c

For a given design condition the greater of the two weights as given by equations T13

and T15 must be chosen. It should be noted that the weight given by equation T13

increases for increasing thickness tc while the weight given by equation T15 decreases

for increasing thickness tc.
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Weight of a Coilable Longeron Beam Subjected to Frequency
and Root Moment Constraints

The weight WC.L. of a coilable longeron beam as shown in Sketch c, is taken from
reference 7 as:

WC.L. = 3.4(3pAtL ) (C1)

where A t is the area of each longeron which is positioned at a radius R from the beam's

centroid. For the coilable longeron beam, the two unknowns to be determined from the

frequency and root rotational acceleration constraints are A t and R.

[ ,'__ A l

\ /

Cross-Section

Sketch c. Schematic of coilable longeron beam

The quantifies inside the parentheses of eq. C1 are the weight of the three longerons and

the factor 3.4 is an empirical constant which accounts for the beam's battens, diagonals

and joints. This empirical constant is taken from reference 7 where it was determined by

curve fitting data from several coilable longerons beams which had been built.

Frequency Constraint.- The frequency equation for a cantilevered coilable longeron

beam with a large tip mass is taken to be the same as that for the tubular beam and is

given by equation T2. The bending moment of inertia of a three longeron beam about an

axis passing through its centroid is given by:

I = 1.5AtR 2 (C2)

It should be noted that the moment of inertia of a three longeron beam is independent of

the angle of the axis which passes through the beam's centroid. In other words the beam
behaves elastically similar to a cylindrical beam with the same radius R, and the same
amount of material at that radius.

Substituting the expression for I from eq. C2 into the frequency equation T2, results in

one equation governing R and A t as:

R2At_ Lf (C3)
3(1.5)E



Root Moment Constraint.- The root moment is taken to be the same as that for the

tubular beam and is given by eq. T5. For the coilable longeron beam, failure is assumed

to be buckling of the root longeron due to compression from the root moment. Longeron

buckling is taken as the simple support Euler load as:

n2EIt

PEulor (1.14R)2
(C4)

where the beam bay length is given in reference (Crawfordf) as 1.14R, and the moment of

inertia I t of a longeron is:

A 2
it = .___L_.t (C5)

4n

where

Combining equations C4, C5, T5, and T6 yields a second equation governing R and A t

as"

R 1.5_E

A 2 4_(1.14)2 _
(C6)

Equation C6 represents a second equation which governs the coilable longeron radius R

and the longeron area A t. In addition to equations C3 and C6, an additional constraint 7

must be imposed upon the longeron diameter to accomodate packaging as discussed in
the next section.

Longeron Packaging Constraint.- For elastic packaging 7, the longeron diameter, d,
must be limited as follows:

.... 4A,
e (c7)

2R 2R

where e is the longeron allowable strain. In reference 7 this strain value was taken as

0.0133 for fiberglass and is the same value used in the present paper. It should also be

pointed out there is a factor of 2 error in equation 12 of reference 7. The left hand side of

eq. 12 should read d/2R as in eq. C7 rather than d/R.

Coilable Longeron Beam Weight. - Equations C3, C6, and C7 represent three equations

for the two unknowns R and A t, thus the design is overspecified and must be separated

into three possible design cases to determine which two of the three conditions govern.

The three possible cases are: (1) impose the frequency constraint eq. C3 and the root



momentconstrainteq.C6, (2) imposetherootmomentconstrainteq.C6andthestowage
constraintC7, and(3) imposethefrequencyconstrainteq. C3andthestowageconstraint
eq.C7. Case3 is nevercritical, thus,thehigherof thetwo weightsresulting from cases
(1) and(2) mustbetakenasthecoilablelongeronweightandaregivenasfollows:

(1)Frequency/root-moment constrained, coilable longeron beam weight

From equations C3 and C6, the following two expressions are obtained for A t and R:

and

Ag = (C8)

1.5_E

R = 4ot(1.14)2 _ At 2 (C9)

A single equation governing the weight of the coilable longeron beam can be found by

substituting these expressions for R and A t into C1 to obtain:

1 (4(1.14)2/211/5

WC'L'=3"4(3) 3(-_.5)_ 1-'_ ') J (0t'2'5(E_/5]L6'5(f)l'5(O)2'5 (C10)

(2) ROot moment/stowage constrained, coilable longeron beam weight

From eqs. C6 and C7 an expression for the radius is

f 2 -=-.-xl/3

= 1.4x1.14_0_0 |

R _ 1.5rc3F_,e4 ) (Cll)

and the longeron area is found from equation C7. Substituting these into equation C1

yields the following equation for the coilable longeron beam weight as:

3.4(12) (1.1421213 9Lo_2/3"0213WC.L.= (C12)
L'_'_) Z2/3j/3

BEAM WEIGHT RESULTS AND DISCUSSION

A general comparison of the various deployable beams concepts constructed of different
materials is difficult to make over a wide range of the frequency and loading design

%7"7

parameters t' and 0. The reason for this is that the different beams are governed by

practical constraints such as limitations on material thickness which in turn are a function



of the level of thedesignparameters.In orderto obtain insight into therelative weight
andstowageefficiency of thedeployablebeamconceptsconsideredin thepresentpaper,
a specific set of design requirements are selected which are considered to be
representativeof a range of typical spacecraftconditions. The first requirement
consideredis a root moment constraint imposed by an angular accelerationof the
spacecraft.In thepresentpaperthisroot momentis takento be thesameasthatprovided
by a0.03g equivalentlateralstaticloading. Thisrequirementis satisfiedby equatingthe
momentdueto a0.03g lateral loadto themomentcausedby a root angularacceleration
asgivenby equationT5 andis writtenas:

Mtip(O.O3g)L= L2MtipO (R1)

Solvingfor 0 yields:

i_- 0.03g (R2)
L

This equationshows that for this particulardesigncondition, the allowable spacecraft
rotational acceleration is simply a function of 1/L. The other design requirement
consideredis that of a lowest naturalbendingfrequencyconstraint. Sincethevalue of
this constraintis typically not well defined, it is varied in this study to determine its
impactonstructuralweight andbeamdiameter.

Theotherspacecraftinput neededto makeadesignstudyis thetip masson thebeam. To
obtainrepresentativemassvaluesfor small spacecraft,the inflatable solararrayof ref. 9
wasusedasanexample. This solararraywasabout11.5'(3.5)meterslong andweighed
about7 pounds. Sincetherearetwo beamsthatsupportthisweight, half of the weight is

assignedto each beam or mtip =3.51b/386in/sec2- .01 Ib-sec2/in. For the current
designstudythis massis assumedto vary asa functionof thesquareof thebeamlength
to simulateareamassessuchasthatassociatedwith solararrays.

To obtain insight into the relative weights and diametersof the deployable beams
consideredin the presentpaper,four beam lengths(3.5, 7, 14, and 28 meters) were
investigated. For eachlength the beamweightsand beamdiametersareplotted as a
function of natural frequency. The natural frequencywas varied from .02 to 1 Hz to
cover therangeof interestfor mostspacecraft.Thepropertiesusedfor eachof the four
beamsarepresentedin thefollowing table.

E, psi p, lb/in 3 tc, in
Aluminum 10xl06 .1 .003
Rigidizable 4x106 .05 .011

Steel STEM 30x106 .3 .005

Coilable Longeron 7.5x106 .07 .....

For all calculations in this study the dynamic overshoot parameter o_ was taken as 1, and

the local wall buckling constant C from eq. T7 was taken as 0.2.
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L=3.5 meters. - For this beam length the angular acceleration is found from equation R2

to be approximately 0.04 rad/sec 2 and the tip mass is 0.01 lb-sec2/in (3.86 lbs). The

weights for the four deployable beams considered in this paper are shown in figure 1, and
the associated beam diameters are shown in figure 2. In figure 1 it can be seen that the 3

mil aluminum beam is the lightest over the low frequency range, while the coilable

longeron beam is lighter for frequencies greater than 0.35 Hz. For this relatively short

length the three tubular beams are governed primarily by the frequency constraint, while

the coilable longeron beam is governed by the root moment/stowage constraint at low

frequencies and by root moment/frequency for the higher frequncies. At very low values

of frequency (less than 0.1 Hz) the aluminum beam is governed by the root moment

strength constraint.

For this short beam length the beam weights are quite low for all four concepts, however,

as seen in figure 2 there is quite a difference in beam diameters. For the three tubular

beams the required diameter is 3 inches or less while the required diameter for the
coilable longeron beam ranges from 4 to 7 inches. The beam diameter will greatly

influence the stowage volume and deployment weight required for the deployable beams.

In the present paper the only weight considered for the deployable beams is that required

for structural performance. For all of the beams there will be a system weight required to

accomplish deployment. For the STEM and the coilable longeron beams there is a

mechanical deployment canister required that is typically several times the weight of the

beam structure 7. For the inflatable beams there is the weight associated with the

pressurization system that must be considered. The details of these auxiliary weights are
beyond the scope of the present paper, however, these weights will be a strong function
of beam diameter.

L=7 meters. - For this beam length the angular acceleration is 0.02 rad/sec 2 while the

tip mass is .04 lb- sec2/in (15.44 lbs). These beam weights are shown in figure 3 while

the corresponding beam diameters are shown in figure 4. The aluminum beam is the

lightest over much of the frequency range, however, the strength cutoff for the aluminum

beam is now up to 0.3 Hz. The strength constrained weight of a tubular beam is inversely

proportional to the assumed thickness tc as shown by equation T15. Thus, if the
aluminum thickness could be doubled to 6 mils, the weight of the aluminum beam in the

low frequency range would be reduced by a factor of two. The tubular beam diameters

are seen from figure 4 to be about one half of the coilable longeron beam diameters. In

fact the coilable longeron diameter of almost 20 inches is at the size limit of practicality
for these beams.

L=14 meters. - For this beam length the angular acceleration is 0.01 rad/sec 2 while the

tip mass is .16 lb. sec2/in (61.76 lbs). These beam weights are shown in figure 5 while

the corresponding beam diameters are shown in figure 6. For this length the rigidizable

material beam now is the lowest over a large portion of the frequency range. For these

longer lengths it will probably be necessary to limit the design frequency to 0.4 Hz or less

to keep the beam weights practical. The corresponding diameters for these beams are

shown in figure 6. The coilable longeron beam diameter is out of the practical design

range for frequencies greater than 0.4 Hz while the aluminum beam is probably

11



impractically large over the entire range. Even the rigidizable begins to assume

impractical diameters for frequencies above 0.4 Hz.

L=28 meters. - For this beam length the angular acceleration is 0.005 rad/sec 2 as

given by equation R2. However, for this length the beam tip mass was not increased over
that for the 14 m beam. If the tip mass were increased as a function of a square of the

length this would result in a tip weight of about 240 lbs. This was not considered to be

practical for most applications so the tip weight was kept at 61.76 lbs. It should also be

pointed out that this 28 m length is the same as the IAE support boom length 3. In fact

this length and tip mass are representative of design conditions for large inflatable

reflector applications. The beam weights for this length are shown in figure 7 and the

corresponding diameters are shown in figure 8. In figure 7 it can be seen that the

rigidizable beam is lightest over most of the practical frequency range. Because of the

rapid increase in beam weight and diameter with frequency, the design frequency for such

structures would probably have to be restricted to 0.2 Hz or less.

Weight as a function of length - In figure 9 the weights of the four beam concepts are

plotted as a function of length for a fixed natural frequency of 0.2 Hz. This figure

demonstrates that the rigidizable material beam is quite efficient for the longer lengths.

In figure 10 the same weight curves are presented with the addition of a 0.006" thick
aluminum tubular beam. As can be seen from the figure this thickness results in an

aluminum beam with the same efficiency as the rigidizable material beam. Because of

the relatively simple deployment process for the aluminum beam, a research effort should

be conducted to determine if such a beam could be developed.

CONCLUDING REMARKS

The purpose of this investigation was to develop and demonstrate a design methodology

for tubular, rigidizable, space beam structures. This methodology was applied to a new

class of rigidizable beams to permit a rational comparison with alternate deployable

concepts. Specifically the rigidizable beams were compared with the STEM and coilable

longeron beams on a weight and diameter basis.

A series of closed-form equations were developed for the weight and diameter for each of

the concepts for the condition of a long beam cantilevered from a spacecraft with a tip

mass. The two design requirements considered were a lowest natural frequency
constraint and a root moment constraint imposed by a spacecraft angular acceleration.

Although it is difficult to draw completely general conclusions as to the relative

efficiency of the different beam concepts, representative small spacecraft operational

conditions were assumed to enable a comparison to be made.

The two primary rigidizable concepts investigated were a 0.011" thick KEVLAR fabric

impregnated with a rigidizable matrix and a 0.003" thick aluminum tube which is

rigidized by pressure yielding the material. Beam lengths ranging from 3.5 m to 28 m

were investigated for a frequency range from 0.02 Hz to 1 Hz. The strength constraint

imposed was that the beam be required to withstand a 0.03g lateral loading. The beams

were assumed to have a tip mass that was larger than the mass of the beam. This tip mass

12



was inertially similar to themassof adistributedsolararray. Resultsfrom this studyled
to thefollowing conclusions:

1)Becauseof thediscretepracticalthicknessconstraintsimposedon thedifferent tubular
conceptstheactivedesignconstraint,frequencyor strength,is a function of beamlength
andrequiredfrequency. For the shorterlengthsand higher frequencyrequirementsthe
frequencyconstraintis active,while for longerlengthsandlower frequencyrequirements
thestrengthconstraintis active.

2)The threetubularbeamsinvestigated,theKEVLAR rigidizable,thealuminum,andthe
steelSTEMall havesignificantlysmallerdiametersthanthecoilablelongeronbeam.

3) For shorterlength applicationsthe 3 mil aluminum beamis the lightest and most
compactfor low naturalfrequencyrequirements.

4) For longerlengthapplicationstheKEVLAR rigidizable beamis thelightest andmost
compact.

5) If thicker(- 0.006") aluminumbeamconceptscouldbedeveloped,theywouldbevery
efficientover theentirerangeof parametersinvestigated.Sincetherigidizablealuminum
beamis soconceptuallysimple,it is recommendedthat alternatewall constructionsbe
investigatedto extendits rangeof application.

6) The closed-formweight and diameterequationsdevelopedhereinenablea rational
assessmentto bemadeof theeffectof materialpropertiesandthicknesseson deployable
beam performance. For example, for frequency designed beams the weight is
proportional to 1/E 1/3while for strengthdesignedbeamsthe weight is proportionalto
1/E. Suchknowledgepermitsaquick assessmentof therelativeperformanceofferedby
alternatematerialsystems.

7) The designmethodologydevelopedhereinpermitsarational assessmentof the effect
of spacecraftrequirements(frequencyand strength)on deployable beamweight and
diameter.It is recommendedthatthismethodologybeusedearlyin thedesignprocessto
assistin establishingrationalandreasonablespacecraftdesignrequirements.Conducting
athoroughsensitivitystudyof deployablebeamweightanddiameterto spacecraftdesign
requirementsearly in the designprocessshould lead to the most robust designat the
lowestcostin termsof weightandstowageefficiency.
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Figure 1. - Deployable beam weight as a funtion of frequency for L = 3.5 m.
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